49,941 research outputs found

    Gauge Threshold Corrections in Warped Geometry

    Full text link
    We discuss the Kaluza-Klein threshold correction to low energy gauge couplings in theories with warped extra-dimension, which might be crucial for the gauge coupling unification when the warping is sizable. Explicit expressions of one-loop thresholds are derived for generic 5D gauge theory on a slice of AdS_5, where some of the bulk gauge symmetries are broken by orbifold boundary conditions and/or by bulk Higgs vacuum values. Effects of the mass mixing between the bulk fields with different orbifold parities are included as such mixing is required in some class of realistic warped unification models.Comment: 33 pages, 1 figure, 6 tables, invited contribution to New Journal of Physics Focus Issue on 'Extra Space Dimensions

    Correct Effective Potential of Supersymmetric Yang-Mills Theory on M^4\times S^1

    Full text link
    We study an N=1{\cal N}=1 supersymmetric Yang-Mills theory defined on M4×S1M^4\times S^1. The vacuum expectation values for adjoint scalar field in vector multiplet, though important, has been overlooked in evaluating one-loop effective potential of the theory. We correctly take the vacuum expectation values into account in addition to the Wilson line phases to give an expression for the effective potential, and gauge symmetry breaking is discussed. In evaluating the potential, we employ the Scherk-Schwarz mechanism and introduce bare mass for gaugino in order to break supersymmetry. We also obtain masses for the scalars, the adjoint scalar, and the component gauge field for the S1S^1 direction in case of the SU(2) gauge group. We observe that large supersymmetry breaking gives larger mass for the scalar. This analysis is easily applied to the M4×S1/Z2M^4\times S^1/Z_2 case.Comment: 12 pages, 1 figur

    Theory of Bubble Nucleation and Cooperativity in DNA Melting

    Full text link
    The onset of intermediate states (denaturation bubbles) and their role during the melting transition of DNA are studied using the Peyrard-Bishop-Daxuois model by Monte Carlo simulations with no adjustable parameters. Comparison is made with previously published experimental results finding excellent agreement. Melting curves, critical DNA segment length for stability of bubbles and the possibility of a two states transition are studied.Comment: 4 figures. Accepted for publication in Physical Review Letter

    Sparticle masses in deflected mirage mediation

    Full text link
    We discuss the sparticle mass patterns that can be realized in deflected mirage mediation scenario of supersymmetry breaking, in which the moduli, anomaly, and gauge mediations all contribute to the MSSM soft parameters. Analytic expression of low energy soft parameters and also the sfermion mass sum rules are derived, which can be used to interpret the experimentally measured sparticle masses within the framework of the most general mixed moduli-gauge-anomaly mediation. Phenomenological aspects of some specific examples are also discussed.Comment: 43 pages, 17 figures, references adde

    Giant phonon anomalies in the pseudo-gap phase of TiOCl

    Full text link
    We report infrared and Raman spectroscopy results of the spin-1/2 quantum magnet TiOCl. Giant anomalies are found in the temperature dependence of the phonon spectrum, which hint to unusual coupling of the electronic degrees of freedom to the lattice. These anomalies develop over a broad temperature interval, suggesting the presence of an extended fluctuation regime. This defines a pseudo-gap phase, characterized by a local spin-gap. Below 100 K a dimensionality cross-over leads to a dimerized ground state with a global spin-gap of about 2Δspin≈\Delta_{spin}\approx~430 K.Comment: 4 pages, 3 figures, for further information see http://www.peter-lemmens.d

    Running of Gauge Couplings in AdS5 via Deconstruction

    Full text link
    Running of gauge couplings on a slice of AdS5 is examined using the deconstruction set-up. Logarithmic running instead of (linear) power law is justified when the cutoff is lower than the curvature scale. Most of interesting features in warped gauge theory including the localization of Kaluza-Klein modes, the widening of higher Kaluza-Klein spectrum spacing are well captured within the framework of the deconstruction.Comment: 20 pages, 3 figures, revtex, refereces added and typos corrected; the version published in JHE

    Dynamical solution to the Ό\mu problem at TeV scale

    Get PDF
    We introduce a new confining force (\mu-color) at TeV scale to dynamically generate a supersymmetry preserving mass scale which would replace the \mu parameter in the minimal supersymmetric standard model (MSSM). We discuss the Higgs phenomenology and also the pattern of soft supersymmetry breaking parameters allowing the correct electroweak symmetry breaking within the \mu-color model, which have quite distinctive features from the MSSM and also from other generalizations of the MSSM.Comment: 12 pages, REVte

    Radius-dependent gauge unification in AdS5

    Get PDF
    We examine the relation of the 4-dimensional low energy coupling of bulk gauge boson in a slice of AdS5 to the 5-dimensional fundamental couplings as a function of the orbifold radius R. This allows us to address the gauge coupling unification in AdS5 by means of the radius running as well as the conventional momentum running. We then compute the radius dependence of 1-loop low energy couplings in generic AdS5 theory with 4-dimensional supersymmetry, and discuss the low energy predictions when the 5-dimensional couplings are assumed to be unified.Comment: 11 pages, 2 figures, revtex, v3: analysis was generalized to S^1/Z_2*Z_2 orbifoldin

    Ghosts and Tachyons in the Fifth Dimension

    Full text link
    We present several solutions for the five dimensional gravity models in the presence of bulk ghosts and tachyons to argue that these "troublesome" fields can be a useful model-building tool. The ghost-like signature of the kinetic term for a bulk scalar creates a minimum in the scale factor, removing the necessity for a negative tension brane in models with the compactified fifth dimension. It is shown that the model with the positive tension branes and a ghost field in the bulk leads to the radion stabilization. The bulk scalar with the variable sign kinetic term can be used to model both positive and negative tension branes of a finite width in the compact dimension. Finally, we present several ghost and tachyon field configurations in the bulk that lead to the localization of gravity in four dimensions, including one solution with the Gaussian profile for the metric, g_{\mu\nu}(y)=\eta_{\mu\nu}\exp{-\alpha y^2}, which leads to a stronger localization of gravity than the Randall-Sundrum model.Comment: New references adde

    New contribution to dimension five operators on proton decay in anomaly mediation scenario

    Full text link
    In supergravity, effective superpotential relevant to dimension five operators on proton decay processes also leads to supersymmetry breaking terms among sfermions, dimension four operators. These dimension four operators induce the dimension five operators through 1-loop diagrams dressed by gauginos. We find that, in a class of models with the anomaly mediation, the 1-loop contributions can be comparable to those at the tree level. Therefore, such operators have a great impact on proton decay rate. Depending on a universal phase of gaugino masses and soft mass spectrum, the proton decay rate can be enhanced or suppressed.Comment: 8 pages, no figure. A few minor changes have been mad
    • 

    corecore